Metamath Proof Explorer


Theorem ad5ant245

Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)

Ref Expression
Hypothesis ad5ant.1
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion ad5ant245
|- ( ( ( ( ( ta /\ ph ) /\ et ) /\ ps ) /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 ad5ant.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 1 3adant1l
 |-  ( ( ( ta /\ ph ) /\ ps /\ ch ) -> th )
3 2 ad4ant134
 |-  ( ( ( ( ( ta /\ ph ) /\ et ) /\ ps ) /\ ch ) -> th )