Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ad5ant.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
Assertion | ad5ant245 | |- ( ( ( ( ( ta /\ ph ) /\ et ) /\ ps ) /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad5ant.1 | |- ( ( ph /\ ps /\ ch ) -> th ) |
|
2 | 1 | 3adant1l | |- ( ( ( ta /\ ph ) /\ ps /\ ch ) -> th ) |
3 | 2 | ad4ant134 | |- ( ( ( ( ( ta /\ ph ) /\ et ) /\ ps ) /\ ch ) -> th ) |