Description: Deduction adding conjuncts to antecedent. (Contributed by Alan Sare, 17-Oct-2017) (Proof shortened by Wolf Lammen, 14-Apr-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ad5ant2.1 | |- ( ( ph /\ ps ) -> ch ) |
|
Assertion | ad5ant25 | |- ( ( ( ( ( th /\ ph ) /\ ta ) /\ et ) /\ ps ) -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ad5ant2.1 | |- ( ( ph /\ ps ) -> ch ) |
|
2 | 1 | adantll | |- ( ( ( th /\ ph ) /\ ps ) -> ch ) |
3 | 2 | ad4ant14 | |- ( ( ( ( ( th /\ ph ) /\ ta ) /\ et ) /\ ps ) -> ch ) |