Description: Deduction adding 1 conjunct to antecedent. (Contributed by Alan Sare, 17-Oct-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | adantl3r.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
| Assertion | adantl3r | |- ( ( ( ( ( ph /\ et ) /\ ps ) /\ ch ) /\ th ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adantl3r.1 | |- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta ) |
|
| 2 | id | |- ( ( ph /\ ps ) -> ( ph /\ ps ) ) |
|
| 3 | 2 | adantlr | |- ( ( ( ph /\ et ) /\ ps ) -> ( ph /\ ps ) ) |
| 4 | 3 1 | sylanl1 | |- ( ( ( ( ( ph /\ et ) /\ ps ) /\ ch ) /\ th ) -> ta ) |