Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | adantl4r.1 | |- ( ( ( ( ( ph /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka ) |
|
Assertion | adantl4r | |- ( ( ( ( ( ( ph /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantl4r.1 | |- ( ( ( ( ( ph /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka ) |
|
2 | 1 | ex | |- ( ( ( ( ph /\ si ) /\ rh ) /\ mu ) -> ( la -> ka ) ) |
3 | 2 | adantl3r | |- ( ( ( ( ( ph /\ ze ) /\ si ) /\ rh ) /\ mu ) -> ( la -> ka ) ) |
4 | 3 | imp | |- ( ( ( ( ( ( ph /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka ) |