Metamath Proof Explorer


Theorem adantl6r

Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Hypothesis adantl6r.1
|- ( ( ( ( ( ( ( ph /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka )
Assertion adantl6r
|- ( ( ( ( ( ( ( ( ph /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka )

Proof

Step Hyp Ref Expression
1 adantl6r.1
 |-  ( ( ( ( ( ( ( ph /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka )
2 1 ex
 |-  ( ( ( ( ( ( ph /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) -> ( la -> ka ) )
3 2 adantl5r
 |-  ( ( ( ( ( ( ( ph /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) -> ( la -> ka ) )
4 3 imp
 |-  ( ( ( ( ( ( ( ( ph /\ ta ) /\ et ) /\ ze ) /\ si ) /\ rh ) /\ mu ) /\ la ) -> ka )