Metamath Proof Explorer


Theorem adantlllr

Description: Deduction adding a conjunct to antecedent. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypothesis adantlllr.1
|- ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )
Assertion adantlllr
|- ( ( ( ( ( ph /\ et ) /\ ps ) /\ ch ) /\ th ) -> ta )

Proof

Step Hyp Ref Expression
1 adantlllr.1
 |-  ( ( ( ( ph /\ ps ) /\ ch ) /\ th ) -> ta )
2 1 adantl3r
 |-  ( ( ( ( ( ph /\ et ) /\ ps ) /\ ch ) /\ th ) -> ta )