Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004) (Proof shortened by Wolf Lammen, 4-Dec-2012)
Ref | Expression | ||
---|---|---|---|
Hypothesis | adantl2.1 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
Assertion | adantlrl | |- ( ( ( ph /\ ( ta /\ ps ) ) /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | adantl2.1 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
2 | simpr | |- ( ( ta /\ ps ) -> ps ) |
|
3 | 2 1 | sylanl2 | |- ( ( ( ph /\ ( ta /\ ps ) ) /\ ch ) -> th ) |