Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004) (Proof shortened by Wolf Lammen, 4-Dec-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | adantl2.1 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
| Assertion | adantlrr | |- ( ( ( ph /\ ( ps /\ ta ) ) /\ ch ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | adantl2.1 | |- ( ( ( ph /\ ps ) /\ ch ) -> th ) |
|
| 2 | simpl | |- ( ( ps /\ ta ) -> ps ) |
|
| 3 | 2 1 | sylanl2 | |- ( ( ( ph /\ ( ps /\ ta ) ) /\ ch ) -> th ) |