| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addcom |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + C ) = ( ( B + A ) + C ) ) | 
						
							| 3 | 2 | 3adant3 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( ( B + A ) + C ) ) | 
						
							| 4 |  | addass |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) | 
						
							| 5 |  | addass |  |-  ( ( B e. CC /\ A e. CC /\ C e. CC ) -> ( ( B + A ) + C ) = ( B + ( A + C ) ) ) | 
						
							| 6 | 5 | 3com12 |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + A ) + C ) = ( B + ( A + C ) ) ) | 
						
							| 7 | 3 4 6 | 3eqtr3d |  |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B + C ) ) = ( B + ( A + C ) ) ) |