Description: Commutative/associative law that swaps the first two terms in a triple sum. (Contributed by NM, 21-Jan-1997)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | add.1 | |- A e. CC | |
| add.2 | |- B e. CC | ||
| add.3 | |- C e. CC | ||
| Assertion | add12i | |- ( A + ( B + C ) ) = ( B + ( A + C ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | add.1 | |- A e. CC | |
| 2 | add.2 | |- B e. CC | |
| 3 | add.3 | |- C e. CC | |
| 4 | add12 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B + C ) ) = ( B + ( A + C ) ) ) | |
| 5 | 1 2 3 4 | mp3an | |- ( A + ( B + C ) ) = ( B + ( A + C ) ) |