Metamath Proof Explorer


Theorem add1p1

Description: Adding two times 1 to a number. (Contributed by AV, 22-Sep-2018)

Ref Expression
Assertion add1p1
|- ( N e. CC -> ( ( N + 1 ) + 1 ) = ( N + 2 ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( N e. CC -> N e. CC )
2 1cnd
 |-  ( N e. CC -> 1 e. CC )
3 1 2 2 addassd
 |-  ( N e. CC -> ( ( N + 1 ) + 1 ) = ( N + ( 1 + 1 ) ) )
4 1p1e2
 |-  ( 1 + 1 ) = 2
5 4 a1i
 |-  ( N e. CC -> ( 1 + 1 ) = 2 )
6 5 oveq2d
 |-  ( N e. CC -> ( N + ( 1 + 1 ) ) = ( N + 2 ) )
7 3 6 eqtrd
 |-  ( N e. CC -> ( ( N + 1 ) + 1 ) = ( N + 2 ) )