| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpllr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> 0 <_ A ) |
| 2 |
|
simplrl |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B e. RR ) |
| 3 |
|
simplll |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> A e. RR ) |
| 4 |
|
addge02 |
|- ( ( B e. RR /\ A e. RR ) -> ( 0 <_ A <-> B <_ ( A + B ) ) ) |
| 5 |
2 3 4
|
syl2anc |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( 0 <_ A <-> B <_ ( A + B ) ) ) |
| 6 |
1 5
|
mpbid |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B <_ ( A + B ) ) |
| 7 |
|
simpr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A + B ) = 0 ) |
| 8 |
6 7
|
breqtrd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B <_ 0 ) |
| 9 |
|
simplrr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> 0 <_ B ) |
| 10 |
|
0red |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> 0 e. RR ) |
| 11 |
2 10
|
letri3d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( B = 0 <-> ( B <_ 0 /\ 0 <_ B ) ) ) |
| 12 |
8 9 11
|
mpbir2and |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B = 0 ) |
| 13 |
12
|
oveq2d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A + B ) = ( A + 0 ) ) |
| 14 |
3
|
recnd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> A e. CC ) |
| 15 |
14
|
addridd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A + 0 ) = A ) |
| 16 |
13 7 15
|
3eqtr3rd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> A = 0 ) |
| 17 |
16 12
|
jca |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A = 0 /\ B = 0 ) ) |
| 18 |
17
|
ex |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
| 19 |
|
oveq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A + B ) = ( 0 + 0 ) ) |
| 20 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 21 |
19 20
|
eqtrdi |
|- ( ( A = 0 /\ B = 0 ) -> ( A + B ) = 0 ) |
| 22 |
18 21
|
impbid1 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |