Step |
Hyp |
Ref |
Expression |
1 |
|
simpllr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> 0 <_ A ) |
2 |
|
simplrl |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B e. RR ) |
3 |
|
simplll |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> A e. RR ) |
4 |
|
addge02 |
|- ( ( B e. RR /\ A e. RR ) -> ( 0 <_ A <-> B <_ ( A + B ) ) ) |
5 |
2 3 4
|
syl2anc |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( 0 <_ A <-> B <_ ( A + B ) ) ) |
6 |
1 5
|
mpbid |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B <_ ( A + B ) ) |
7 |
|
simpr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A + B ) = 0 ) |
8 |
6 7
|
breqtrd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B <_ 0 ) |
9 |
|
simplrr |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> 0 <_ B ) |
10 |
|
0red |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> 0 e. RR ) |
11 |
2 10
|
letri3d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( B = 0 <-> ( B <_ 0 /\ 0 <_ B ) ) ) |
12 |
8 9 11
|
mpbir2and |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> B = 0 ) |
13 |
12
|
oveq2d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A + B ) = ( A + 0 ) ) |
14 |
3
|
recnd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> A e. CC ) |
15 |
14
|
addid1d |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A + 0 ) = A ) |
16 |
13 7 15
|
3eqtr3rd |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> A = 0 ) |
17 |
16 12
|
jca |
|- ( ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) /\ ( A + B ) = 0 ) -> ( A = 0 /\ B = 0 ) ) |
18 |
17
|
ex |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 -> ( A = 0 /\ B = 0 ) ) ) |
19 |
|
oveq12 |
|- ( ( A = 0 /\ B = 0 ) -> ( A + B ) = ( 0 + 0 ) ) |
20 |
|
00id |
|- ( 0 + 0 ) = 0 |
21 |
19 20
|
eqtrdi |
|- ( ( A = 0 /\ B = 0 ) -> ( A + B ) = 0 ) |
22 |
18 21
|
impbid1 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) ) |