Metamath Proof Explorer


Theorem add20i

Description: Two nonnegative numbers are zero iff their sum is zero. (Contributed by NM, 28-Jul-1999)

Ref Expression
Hypotheses lt2.1
|- A e. RR
lt2.2
|- B e. RR
Assertion add20i
|- ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) )

Proof

Step Hyp Ref Expression
1 lt2.1
 |-  A e. RR
2 lt2.2
 |-  B e. RR
3 add20
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) )
4 3 an4s
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) )
5 1 2 4 mpanl12
 |-  ( ( 0 <_ A /\ 0 <_ B ) -> ( ( A + B ) = 0 <-> ( A = 0 /\ B = 0 ) ) )