| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
| 2 |
1
|
oveq2d |
|- ( ( B e. CC /\ C e. CC ) -> ( A + ( B + C ) ) = ( A + ( C + B ) ) ) |
| 3 |
2
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B + C ) ) = ( A + ( C + B ) ) ) |
| 4 |
|
addass |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |
| 5 |
|
addass |
|- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) + B ) = ( A + ( C + B ) ) ) |
| 6 |
5
|
3com23 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) + B ) = ( A + ( C + B ) ) ) |
| 7 |
3 4 6
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |