Description: Commutative/associative law that swaps the last two terms in a triple sum. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addd.1 | |- ( ph -> A e. CC ) |
|
| addd.2 | |- ( ph -> B e. CC ) |
||
| addd.3 | |- ( ph -> C e. CC ) |
||
| Assertion | add32d | |- ( ph -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addd.1 | |- ( ph -> A e. CC ) |
|
| 2 | addd.2 | |- ( ph -> B e. CC ) |
|
| 3 | addd.3 | |- ( ph -> C e. CC ) |
|
| 4 | add32 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |