Description: Commutative/associative law that swaps the last two terms in a triple sum, rearranging the parentheses. (Contributed by Paul Chapman, 18-May-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | add32r | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B + C ) ) = ( ( A + C ) + B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addass | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |
|
| 2 | add32 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( ( A + C ) + B ) ) |
|
| 3 | 1 2 | eqtr3d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A + ( B + C ) ) = ( ( A + C ) + B ) ) |