| Step |
Hyp |
Ref |
Expression |
| 1 |
|
add12 |
|- ( ( B e. CC /\ C e. CC /\ D e. CC ) -> ( B + ( C + D ) ) = ( C + ( B + D ) ) ) |
| 2 |
1
|
3expb |
|- ( ( B e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( B + ( C + D ) ) = ( C + ( B + D ) ) ) |
| 3 |
2
|
oveq2d |
|- ( ( B e. CC /\ ( C e. CC /\ D e. CC ) ) -> ( A + ( B + ( C + D ) ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 4 |
3
|
adantll |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( A + ( B + ( C + D ) ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 5 |
|
addcl |
|- ( ( C e. CC /\ D e. CC ) -> ( C + D ) e. CC ) |
| 6 |
|
addass |
|- ( ( A e. CC /\ B e. CC /\ ( C + D ) e. CC ) -> ( ( A + B ) + ( C + D ) ) = ( A + ( B + ( C + D ) ) ) ) |
| 7 |
6
|
3expa |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C + D ) e. CC ) -> ( ( A + B ) + ( C + D ) ) = ( A + ( B + ( C + D ) ) ) ) |
| 8 |
5 7
|
sylan2 |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) + ( C + D ) ) = ( A + ( B + ( C + D ) ) ) ) |
| 9 |
|
addcl |
|- ( ( B e. CC /\ D e. CC ) -> ( B + D ) e. CC ) |
| 10 |
|
addass |
|- ( ( A e. CC /\ C e. CC /\ ( B + D ) e. CC ) -> ( ( A + C ) + ( B + D ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 11 |
10
|
3expa |
|- ( ( ( A e. CC /\ C e. CC ) /\ ( B + D ) e. CC ) -> ( ( A + C ) + ( B + D ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 12 |
9 11
|
sylan2 |
|- ( ( ( A e. CC /\ C e. CC ) /\ ( B e. CC /\ D e. CC ) ) -> ( ( A + C ) + ( B + D ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 13 |
12
|
an4s |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + C ) + ( B + D ) ) = ( A + ( C + ( B + D ) ) ) ) |
| 14 |
4 8 13
|
3eqtr4d |
|- ( ( ( A e. CC /\ B e. CC ) /\ ( C e. CC /\ D e. CC ) ) -> ( ( A + B ) + ( C + D ) ) = ( ( A + C ) + ( B + D ) ) ) |