Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | addcld.1 | |- ( ph -> A e. CC ) |
|
addcld.2 | |- ( ph -> B e. CC ) |
||
addassd.3 | |- ( ph -> C e. CC ) |
||
Assertion | addassd | |- ( ph -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | |- ( ph -> A e. CC ) |
|
2 | addcld.2 | |- ( ph -> B e. CC ) |
|
3 | addassd.3 | |- ( ph -> C e. CC ) |
|
4 | addass | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |