Description: Associative law for addition. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addcld.1 | |- ( ph -> A e. CC ) |
|
| addcld.2 | |- ( ph -> B e. CC ) |
||
| addassd.3 | |- ( ph -> C e. CC ) |
||
| Assertion | addassd | |- ( ph -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 | |- ( ph -> A e. CC ) |
|
| 2 | addcld.2 | |- ( ph -> B e. CC ) |
|
| 3 | addassd.3 | |- ( ph -> C e. CC ) |
|
| 4 | addass | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( ( A + B ) + C ) = ( A + ( B + C ) ) ) |