| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addasspi |
|- ( ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) ) |
| 2 |
|
ovex |
|- ( ( 1st ` A ) .N ( 2nd ` B ) ) e. _V |
| 3 |
|
ovex |
|- ( ( 1st ` B ) .N ( 2nd ` A ) ) e. _V |
| 4 |
|
fvex |
|- ( 2nd ` C ) e. _V |
| 5 |
|
mulcompi |
|- ( x .N y ) = ( y .N x ) |
| 6 |
|
distrpi |
|- ( x .N ( y +N z ) ) = ( ( x .N y ) +N ( x .N z ) ) |
| 7 |
2 3 4 5 6
|
caovdir |
|- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) |
| 8 |
|
mulasspi |
|- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) = ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 9 |
8
|
oveq1i |
|- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) |
| 10 |
7 9
|
eqtri |
|- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) |
| 11 |
10
|
oveq1i |
|- ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) |
| 12 |
|
ovex |
|- ( ( 1st ` B ) .N ( 2nd ` C ) ) e. _V |
| 13 |
|
ovex |
|- ( ( 1st ` C ) .N ( 2nd ` B ) ) e. _V |
| 14 |
|
fvex |
|- ( 2nd ` A ) e. _V |
| 15 |
12 13 14 5 6
|
caovdir |
|- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) = ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) .N ( 2nd ` A ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` B ) ) .N ( 2nd ` A ) ) ) |
| 16 |
|
fvex |
|- ( 1st ` B ) e. _V |
| 17 |
|
mulasspi |
|- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
| 18 |
16 4 14 5 17
|
caov32 |
|- ( ( ( 1st ` B ) .N ( 2nd ` C ) ) .N ( 2nd ` A ) ) = ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) |
| 19 |
|
mulasspi |
|- ( ( ( 1st ` C ) .N ( 2nd ` B ) ) .N ( 2nd ` A ) ) = ( ( 1st ` C ) .N ( ( 2nd ` B ) .N ( 2nd ` A ) ) ) |
| 20 |
|
mulcompi |
|- ( ( 2nd ` B ) .N ( 2nd ` A ) ) = ( ( 2nd ` A ) .N ( 2nd ` B ) ) |
| 21 |
20
|
oveq2i |
|- ( ( 1st ` C ) .N ( ( 2nd ` B ) .N ( 2nd ` A ) ) ) = ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) |
| 22 |
19 21
|
eqtri |
|- ( ( ( 1st ` C ) .N ( 2nd ` B ) ) .N ( 2nd ` A ) ) = ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) |
| 23 |
18 22
|
oveq12i |
|- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) .N ( 2nd ` A ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` B ) ) .N ( 2nd ` A ) ) ) = ( ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) |
| 24 |
15 23
|
eqtri |
|- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) = ( ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) |
| 25 |
24
|
oveq2i |
|- ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) ) |
| 26 |
1 11 25
|
3eqtr4i |
|- ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) |
| 27 |
|
mulasspi |
|- ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 28 |
26 27
|
opeq12i |
|- <. ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. = <. ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. |
| 29 |
|
elpqn |
|- ( A e. Q. -> A e. ( N. X. N. ) ) |
| 30 |
29
|
3ad2ant1 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A e. ( N. X. N. ) ) |
| 31 |
|
elpqn |
|- ( B e. Q. -> B e. ( N. X. N. ) ) |
| 32 |
31
|
3ad2ant2 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> B e. ( N. X. N. ) ) |
| 33 |
|
addpipq2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A +pQ B ) = <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) |
| 34 |
30 32 33
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +pQ B ) = <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. ) |
| 35 |
|
relxp |
|- Rel ( N. X. N. ) |
| 36 |
|
elpqn |
|- ( C e. Q. -> C e. ( N. X. N. ) ) |
| 37 |
36
|
3ad2ant3 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C e. ( N. X. N. ) ) |
| 38 |
|
1st2nd |
|- ( ( Rel ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
| 39 |
35 37 38
|
sylancr |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C = <. ( 1st ` C ) , ( 2nd ` C ) >. ) |
| 40 |
34 39
|
oveq12d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +pQ B ) +pQ C ) = ( <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. +pQ <. ( 1st ` C ) , ( 2nd ` C ) >. ) ) |
| 41 |
|
xp1st |
|- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
| 42 |
30 41
|
syl |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` A ) e. N. ) |
| 43 |
|
xp2nd |
|- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
| 44 |
32 43
|
syl |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` B ) e. N. ) |
| 45 |
|
mulclpi |
|- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 46 |
42 44 45
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 47 |
|
xp1st |
|- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
| 48 |
32 47
|
syl |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` B ) e. N. ) |
| 49 |
|
xp2nd |
|- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
| 50 |
30 49
|
syl |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` A ) e. N. ) |
| 51 |
|
mulclpi |
|- ( ( ( 1st ` B ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( 1st ` B ) .N ( 2nd ` A ) ) e. N. ) |
| 52 |
48 50 51
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` B ) .N ( 2nd ` A ) ) e. N. ) |
| 53 |
|
addclpi |
|- ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. /\ ( ( 1st ` B ) .N ( 2nd ` A ) ) e. N. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) e. N. ) |
| 54 |
46 52 53
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) e. N. ) |
| 55 |
|
mulclpi |
|- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 56 |
50 44 55
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 57 |
|
xp1st |
|- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
| 58 |
37 57
|
syl |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 1st ` C ) e. N. ) |
| 59 |
|
xp2nd |
|- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
| 60 |
37 59
|
syl |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( 2nd ` C ) e. N. ) |
| 61 |
|
addpipq |
|- ( ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` B ) ) e. N. ) /\ ( ( 1st ` C ) e. N. /\ ( 2nd ` C ) e. N. ) ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. +pQ <. ( 1st ` C ) , ( 2nd ` C ) >. ) = <. ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. ) |
| 62 |
54 56 58 60 61
|
syl22anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` B ) ) >. +pQ <. ( 1st ` C ) , ( 2nd ` C ) >. ) = <. ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. ) |
| 63 |
40 62
|
eqtrd |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +pQ B ) +pQ C ) = <. ( ( ( ( ( 1st ` A ) .N ( 2nd ` B ) ) +N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( ( 2nd ` A ) .N ( 2nd ` B ) ) ) ) , ( ( ( 2nd ` A ) .N ( 2nd ` B ) ) .N ( 2nd ` C ) ) >. ) |
| 64 |
|
1st2nd |
|- ( ( Rel ( N. X. N. ) /\ A e. ( N. X. N. ) ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 65 |
35 30 64
|
sylancr |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) |
| 66 |
|
addpipq2 |
|- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 67 |
32 37 66
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 68 |
65 67
|
oveq12d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +pQ ( B +pQ C ) ) = ( <. ( 1st ` A ) , ( 2nd ` A ) >. +pQ <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) |
| 69 |
|
mulclpi |
|- ( ( ( 1st ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 70 |
48 60 69
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 71 |
|
mulclpi |
|- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
| 72 |
58 44 71
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
| 73 |
|
addclpi |
|- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 74 |
70 72 73
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 75 |
|
mulclpi |
|- ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 76 |
44 60 75
|
syl2anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 77 |
|
addpipq |
|- ( ( ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) /\ ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. +pQ <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 78 |
42 50 74 76 77
|
syl22anc |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. +pQ <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 79 |
68 78
|
eqtrd |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +pQ ( B +pQ C ) ) = <. ( ( ( 1st ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) >. ) |
| 80 |
28 63 79
|
3eqtr4a |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +pQ B ) +pQ C ) = ( A +pQ ( B +pQ C ) ) ) |
| 81 |
80
|
fveq2d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( /Q ` ( ( A +pQ B ) +pQ C ) ) = ( /Q ` ( A +pQ ( B +pQ C ) ) ) ) |
| 82 |
|
adderpq |
|- ( ( /Q ` ( A +pQ B ) ) +Q ( /Q ` C ) ) = ( /Q ` ( ( A +pQ B ) +pQ C ) ) |
| 83 |
|
adderpq |
|- ( ( /Q ` A ) +Q ( /Q ` ( B +pQ C ) ) ) = ( /Q ` ( A +pQ ( B +pQ C ) ) ) |
| 84 |
81 82 83
|
3eqtr4g |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( /Q ` ( A +pQ B ) ) +Q ( /Q ` C ) ) = ( ( /Q ` A ) +Q ( /Q ` ( B +pQ C ) ) ) ) |
| 85 |
|
addpqnq |
|- ( ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) = ( /Q ` ( A +pQ B ) ) ) |
| 86 |
85
|
3adant3 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +Q B ) = ( /Q ` ( A +pQ B ) ) ) |
| 87 |
|
nqerid |
|- ( C e. Q. -> ( /Q ` C ) = C ) |
| 88 |
87
|
eqcomd |
|- ( C e. Q. -> C = ( /Q ` C ) ) |
| 89 |
88
|
3ad2ant3 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> C = ( /Q ` C ) ) |
| 90 |
86 89
|
oveq12d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +Q B ) +Q C ) = ( ( /Q ` ( A +pQ B ) ) +Q ( /Q ` C ) ) ) |
| 91 |
|
nqerid |
|- ( A e. Q. -> ( /Q ` A ) = A ) |
| 92 |
91
|
eqcomd |
|- ( A e. Q. -> A = ( /Q ` A ) ) |
| 93 |
92
|
3ad2ant1 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> A = ( /Q ` A ) ) |
| 94 |
|
addpqnq |
|- ( ( B e. Q. /\ C e. Q. ) -> ( B +Q C ) = ( /Q ` ( B +pQ C ) ) ) |
| 95 |
94
|
3adant1 |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( B +Q C ) = ( /Q ` ( B +pQ C ) ) ) |
| 96 |
93 95
|
oveq12d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( A +Q ( B +Q C ) ) = ( ( /Q ` A ) +Q ( /Q ` ( B +pQ C ) ) ) ) |
| 97 |
84 90 96
|
3eqtr4d |
|- ( ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +Q B ) +Q C ) = ( A +Q ( B +Q C ) ) ) |
| 98 |
|
addnqf |
|- +Q : ( Q. X. Q. ) --> Q. |
| 99 |
98
|
fdmi |
|- dom +Q = ( Q. X. Q. ) |
| 100 |
|
0nnq |
|- -. (/) e. Q. |
| 101 |
99 100
|
ndmovass |
|- ( -. ( A e. Q. /\ B e. Q. /\ C e. Q. ) -> ( ( A +Q B ) +Q C ) = ( A +Q ( B +Q C ) ) ) |
| 102 |
97 101
|
pm2.61i |
|- ( ( A +Q B ) +Q C ) = ( A +Q ( B +Q C ) ) |