Step |
Hyp |
Ref |
Expression |
1 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
2 |
|
addsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) = [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R ) |
3 |
|
addsrpr |
|- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. z , w >. ] ~R +R [ <. v , u >. ] ~R ) = [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) |
4 |
|
addsrpr |
|- ( ( ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R +R [ <. v , u >. ] ~R ) = [ <. ( ( x +P. z ) +P. v ) , ( ( y +P. w ) +P. u ) >. ] ~R ) |
5 |
|
addsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. ( z +P. v ) , ( w +P. u ) >. ] ~R ) = [ <. ( x +P. ( z +P. v ) ) , ( y +P. ( w +P. u ) ) >. ] ~R ) |
6 |
|
addclpr |
|- ( ( x e. P. /\ z e. P. ) -> ( x +P. z ) e. P. ) |
7 |
|
addclpr |
|- ( ( y e. P. /\ w e. P. ) -> ( y +P. w ) e. P. ) |
8 |
6 7
|
anim12i |
|- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) ) |
9 |
8
|
an4s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) ) |
10 |
|
addclpr |
|- ( ( z e. P. /\ v e. P. ) -> ( z +P. v ) e. P. ) |
11 |
|
addclpr |
|- ( ( w e. P. /\ u e. P. ) -> ( w +P. u ) e. P. ) |
12 |
10 11
|
anim12i |
|- ( ( ( z e. P. /\ v e. P. ) /\ ( w e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
13 |
12
|
an4s |
|- ( ( ( z e. P. /\ w e. P. ) /\ ( v e. P. /\ u e. P. ) ) -> ( ( z +P. v ) e. P. /\ ( w +P. u ) e. P. ) ) |
14 |
|
addasspr |
|- ( ( x +P. z ) +P. v ) = ( x +P. ( z +P. v ) ) |
15 |
|
addasspr |
|- ( ( y +P. w ) +P. u ) = ( y +P. ( w +P. u ) ) |
16 |
1 2 3 4 5 9 13 14 15
|
ecovass |
|- ( ( A e. R. /\ B e. R. /\ C e. R. ) -> ( ( A +R B ) +R C ) = ( A +R ( B +R C ) ) ) |
17 |
|
dmaddsr |
|- dom +R = ( R. X. R. ) |
18 |
|
0nsr |
|- -. (/) e. R. |
19 |
17 18
|
ndmovass |
|- ( -. ( A e. R. /\ B e. R. /\ C e. R. ) -> ( ( A +R B ) +R C ) = ( A +R ( B +R C ) ) ) |
20 |
16 19
|
pm2.61i |
|- ( ( A +R B ) +R C ) = ( A +R ( B +R C ) ) |