| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnegex |
|- ( C e. CC -> E. x e. CC ( C + x ) = 0 ) |
| 2 |
1
|
3ad2ant3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> E. x e. CC ( C + x ) = 0 ) |
| 3 |
|
oveq1 |
|- ( ( A + C ) = ( B + C ) -> ( ( A + C ) + x ) = ( ( B + C ) + x ) ) |
| 4 |
|
simpl1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> A e. CC ) |
| 5 |
|
simpl3 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> C e. CC ) |
| 6 |
|
simprl |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> x e. CC ) |
| 7 |
4 5 6
|
addassd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( ( A + C ) + x ) = ( A + ( C + x ) ) ) |
| 8 |
|
simprr |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( C + x ) = 0 ) |
| 9 |
8
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( A + ( C + x ) ) = ( A + 0 ) ) |
| 10 |
|
addrid |
|- ( A e. CC -> ( A + 0 ) = A ) |
| 11 |
4 10
|
syl |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( A + 0 ) = A ) |
| 12 |
7 9 11
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( ( A + C ) + x ) = A ) |
| 13 |
|
simpl2 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> B e. CC ) |
| 14 |
13 5 6
|
addassd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( ( B + C ) + x ) = ( B + ( C + x ) ) ) |
| 15 |
8
|
oveq2d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( B + ( C + x ) ) = ( B + 0 ) ) |
| 16 |
|
addrid |
|- ( B e. CC -> ( B + 0 ) = B ) |
| 17 |
13 16
|
syl |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( B + 0 ) = B ) |
| 18 |
14 15 17
|
3eqtrd |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( ( B + C ) + x ) = B ) |
| 19 |
12 18
|
eqeq12d |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( ( ( A + C ) + x ) = ( ( B + C ) + x ) <-> A = B ) ) |
| 20 |
3 19
|
imbitrid |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( ( A + C ) = ( B + C ) -> A = B ) ) |
| 21 |
|
oveq1 |
|- ( A = B -> ( A + C ) = ( B + C ) ) |
| 22 |
20 21
|
impbid1 |
|- ( ( ( A e. CC /\ B e. CC /\ C e. CC ) /\ ( x e. CC /\ ( C + x ) = 0 ) ) -> ( ( A + C ) = ( B + C ) <-> A = B ) ) |
| 23 |
2 22
|
rexlimddv |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) = ( B + C ) <-> A = B ) ) |