Metamath Proof Explorer


Theorem addcan2ad

Description: Cancelling a term on the right-hand side of a sum in an equality. Consequence of addcan2d . (Contributed by David Moews, 28-Feb-2017)

Ref Expression
Hypotheses muld.1
|- ( ph -> A e. CC )
addcomd.2
|- ( ph -> B e. CC )
addcand.3
|- ( ph -> C e. CC )
addcan2ad.4
|- ( ph -> ( A + C ) = ( B + C ) )
Assertion addcan2ad
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 muld.1
 |-  ( ph -> A e. CC )
2 addcomd.2
 |-  ( ph -> B e. CC )
3 addcand.3
 |-  ( ph -> C e. CC )
4 addcan2ad.4
 |-  ( ph -> ( A + C ) = ( B + C ) )
5 1 2 3 addcan2d
 |-  ( ph -> ( ( A + C ) = ( B + C ) <-> A = B ) )
6 4 5 mpbid
 |-  ( ph -> A = B )