Metamath Proof Explorer


Theorem addcan2i

Description: Cancellation law for addition. Theorem I.1 of Apostol p. 18. (Contributed by NM, 14-May-2003) (Revised by Scott Fenton, 3-Jan-2013)

Ref Expression
Hypotheses mul.1
|- A e. CC
mul.2
|- B e. CC
mul.3
|- C e. CC
Assertion addcan2i
|- ( ( A + C ) = ( B + C ) <-> A = B )

Proof

Step Hyp Ref Expression
1 mul.1
 |-  A e. CC
2 mul.2
 |-  B e. CC
3 mul.3
 |-  C e. CC
4 addcan2
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) = ( B + C ) <-> A = B ) )
5 1 2 3 4 mp3an
 |-  ( ( A + C ) = ( B + C ) <-> A = B )