Metamath Proof Explorer


Theorem addcani

Description: Cancellation law for addition. Theorem I.1 of Apostol p. 18. (Contributed by NM, 27-Oct-1999) (Revised by Scott Fenton, 3-Jan-2013)

Ref Expression
Hypotheses mul.1
|- A e. CC
mul.2
|- B e. CC
mul.3
|- C e. CC
Assertion addcani
|- ( ( A + B ) = ( A + C ) <-> B = C )

Proof

Step Hyp Ref Expression
1 mul.1
 |-  A e. CC
2 mul.2
 |-  B e. CC
3 mul.3
 |-  C e. CC
4 addcan
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) = ( A + C ) <-> B = C ) )
5 1 2 3 4 mp3an
 |-  ( ( A + B ) = ( A + C ) <-> B = C )