Metamath Proof Explorer


Theorem addccncf

Description: Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypothesis addccncf.1
|- F = ( x e. CC |-> ( x + A ) )
Assertion addccncf
|- ( A e. CC -> F e. ( CC -cn-> CC ) )

Proof

Step Hyp Ref Expression
1 addccncf.1
 |-  F = ( x e. CC |-> ( x + A ) )
2 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
3 2 addcn
 |-  + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) )
4 3 a1i
 |-  ( A e. CC -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) )
5 ssid
 |-  CC C_ CC
6 cncfmptid
 |-  ( ( CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) )
7 5 5 6 mp2an
 |-  ( x e. CC |-> x ) e. ( CC -cn-> CC )
8 7 a1i
 |-  ( A e. CC -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) )
9 cncfmptc
 |-  ( ( A e. CC /\ CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) )
10 5 5 9 mp3an23
 |-  ( A e. CC -> ( x e. CC |-> A ) e. ( CC -cn-> CC ) )
11 2 4 8 10 cncfmpt2f
 |-  ( A e. CC -> ( x e. CC |-> ( x + A ) ) e. ( CC -cn-> CC ) )
12 1 11 eqeltrid
 |-  ( A e. CC -> F e. ( CC -cn-> CC ) )