| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addccncf2.1 |  |-  F = ( x e. A |-> ( B + x ) ) | 
						
							| 2 |  | simpl |  |-  ( ( A C_ CC /\ B e. CC ) -> A C_ CC ) | 
						
							| 3 |  | simpr |  |-  ( ( A C_ CC /\ B e. CC ) -> B e. CC ) | 
						
							| 4 |  | ssidd |  |-  ( ( A C_ CC /\ B e. CC ) -> CC C_ CC ) | 
						
							| 5 | 2 3 4 | constcncfg |  |-  ( ( A C_ CC /\ B e. CC ) -> ( x e. A |-> B ) e. ( A -cn-> CC ) ) | 
						
							| 6 |  | ssid |  |-  CC C_ CC | 
						
							| 7 |  | cncfmptid |  |-  ( ( A C_ CC /\ CC C_ CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( A C_ CC -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A C_ CC /\ B e. CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) | 
						
							| 10 | 5 9 | addcncf |  |-  ( ( A C_ CC /\ B e. CC ) -> ( x e. A |-> ( B + x ) ) e. ( A -cn-> CC ) ) | 
						
							| 11 | 1 10 | eqeltrid |  |-  ( ( A C_ CC /\ B e. CC ) -> F e. ( A -cn-> CC ) ) |