Step |
Hyp |
Ref |
Expression |
1 |
|
addccncf2.1 |
|- F = ( x e. A |-> ( B + x ) ) |
2 |
|
simpl |
|- ( ( A C_ CC /\ B e. CC ) -> A C_ CC ) |
3 |
|
simpr |
|- ( ( A C_ CC /\ B e. CC ) -> B e. CC ) |
4 |
|
ssidd |
|- ( ( A C_ CC /\ B e. CC ) -> CC C_ CC ) |
5 |
2 3 4
|
constcncfg |
|- ( ( A C_ CC /\ B e. CC ) -> ( x e. A |-> B ) e. ( A -cn-> CC ) ) |
6 |
|
ssid |
|- CC C_ CC |
7 |
|
cncfmptid |
|- ( ( A C_ CC /\ CC C_ CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
8 |
6 7
|
mpan2 |
|- ( A C_ CC -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
9 |
8
|
adantr |
|- ( ( A C_ CC /\ B e. CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
10 |
5 9
|
addcncf |
|- ( ( A C_ CC /\ B e. CC ) -> ( x e. A |-> ( B + x ) ) e. ( A -cn-> CC ) ) |
11 |
1 10
|
eqeltrid |
|- ( ( A C_ CC /\ B e. CC ) -> F e. ( A -cn-> CC ) ) |