| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reval |  |-  ( A e. CC -> ( Re ` A ) = ( ( A + ( * ` A ) ) / 2 ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( A e. CC -> ( 2 x. ( Re ` A ) ) = ( 2 x. ( ( A + ( * ` A ) ) / 2 ) ) ) | 
						
							| 3 |  | cjcl |  |-  ( A e. CC -> ( * ` A ) e. CC ) | 
						
							| 4 |  | addcl |  |-  ( ( A e. CC /\ ( * ` A ) e. CC ) -> ( A + ( * ` A ) ) e. CC ) | 
						
							| 5 | 3 4 | mpdan |  |-  ( A e. CC -> ( A + ( * ` A ) ) e. CC ) | 
						
							| 6 |  | 2cn |  |-  2 e. CC | 
						
							| 7 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 8 |  | divcan2 |  |-  ( ( ( A + ( * ` A ) ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( 2 x. ( ( A + ( * ` A ) ) / 2 ) ) = ( A + ( * ` A ) ) ) | 
						
							| 9 | 6 7 8 | mp3an23 |  |-  ( ( A + ( * ` A ) ) e. CC -> ( 2 x. ( ( A + ( * ` A ) ) / 2 ) ) = ( A + ( * ` A ) ) ) | 
						
							| 10 | 5 9 | syl |  |-  ( A e. CC -> ( 2 x. ( ( A + ( * ` A ) ) / 2 ) ) = ( A + ( * ` A ) ) ) | 
						
							| 11 | 2 10 | eqtr2d |  |-  ( A e. CC -> ( A + ( * ` A ) ) = ( 2 x. ( Re ` A ) ) ) |