Metamath Proof Explorer


Theorem addcli

Description: Closure law for addition. (Contributed by NM, 23-Nov-1994)

Ref Expression
Hypotheses axi.1
|- A e. CC
axi.2
|- B e. CC
Assertion addcli
|- ( A + B ) e. CC

Proof

Step Hyp Ref Expression
1 axi.1
 |-  A e. CC
2 axi.2
 |-  B e. CC
3 addcl
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC )
4 1 2 3 mp2an
 |-  ( A + B ) e. CC