| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addclprlem1 |  |-  ( ( ( A e. P. /\ g e. A ) /\ x e. Q. ) -> ( x  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) | 
						
							| 2 | 1 | adantlr |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) | 
						
							| 3 |  | addclprlem1 |  |-  ( ( ( B e. P. /\ h e. B ) /\ x e. Q. ) -> ( x  ( ( x .Q ( *Q ` ( h +Q g ) ) ) .Q h ) e. B ) ) | 
						
							| 4 |  | addcomnq |  |-  ( g +Q h ) = ( h +Q g ) | 
						
							| 5 | 4 | breq2i |  |-  ( x  x  | 
						
							| 6 | 4 | fveq2i |  |-  ( *Q ` ( g +Q h ) ) = ( *Q ` ( h +Q g ) ) | 
						
							| 7 | 6 | oveq2i |  |-  ( x .Q ( *Q ` ( g +Q h ) ) ) = ( x .Q ( *Q ` ( h +Q g ) ) ) | 
						
							| 8 | 7 | oveq1i |  |-  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) = ( ( x .Q ( *Q ` ( h +Q g ) ) ) .Q h ) | 
						
							| 9 | 8 | eleq1i |  |-  ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B <-> ( ( x .Q ( *Q ` ( h +Q g ) ) ) .Q h ) e. B ) | 
						
							| 10 | 3 5 9 | 3imtr4g |  |-  ( ( ( B e. P. /\ h e. B ) /\ x e. Q. ) -> ( x  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) ) | 
						
							| 11 | 10 | adantll |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) ) | 
						
							| 12 | 2 11 | jcad |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x  ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A /\ ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) ) ) | 
						
							| 13 |  | simpl |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) ) | 
						
							| 14 |  | simpl |  |-  ( ( A e. P. /\ g e. A ) -> A e. P. ) | 
						
							| 15 |  | simpl |  |-  ( ( B e. P. /\ h e. B ) -> B e. P. ) | 
						
							| 16 | 14 15 | anim12i |  |-  ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( A e. P. /\ B e. P. ) ) | 
						
							| 17 |  | df-plp |  |-  +P. = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y +Q z ) } ) | 
						
							| 18 |  | addclnq |  |-  ( ( y e. Q. /\ z e. Q. ) -> ( y +Q z ) e. Q. ) | 
						
							| 19 | 17 18 | genpprecl |  |-  ( ( A e. P. /\ B e. P. ) -> ( ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A /\ ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) e. ( A +P. B ) ) ) | 
						
							| 20 | 13 16 19 | 3syl |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A /\ ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) e. B ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) e. ( A +P. B ) ) ) | 
						
							| 21 | 12 20 | syld |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x  ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) e. ( A +P. B ) ) ) | 
						
							| 22 |  | distrnq |  |-  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q ( g +Q h ) ) = ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) | 
						
							| 23 |  | mulassnq |  |-  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q ( g +Q h ) ) = ( x .Q ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) ) | 
						
							| 24 | 22 23 | eqtr3i |  |-  ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) = ( x .Q ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) ) | 
						
							| 25 |  | mulcomnq |  |-  ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) = ( ( g +Q h ) .Q ( *Q ` ( g +Q h ) ) ) | 
						
							| 26 |  | elprnq |  |-  ( ( A e. P. /\ g e. A ) -> g e. Q. ) | 
						
							| 27 |  | elprnq |  |-  ( ( B e. P. /\ h e. B ) -> h e. Q. ) | 
						
							| 28 | 26 27 | anim12i |  |-  ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( g e. Q. /\ h e. Q. ) ) | 
						
							| 29 |  | addclnq |  |-  ( ( g e. Q. /\ h e. Q. ) -> ( g +Q h ) e. Q. ) | 
						
							| 30 |  | recidnq |  |-  ( ( g +Q h ) e. Q. -> ( ( g +Q h ) .Q ( *Q ` ( g +Q h ) ) ) = 1Q ) | 
						
							| 31 | 28 29 30 | 3syl |  |-  ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( ( g +Q h ) .Q ( *Q ` ( g +Q h ) ) ) = 1Q ) | 
						
							| 32 | 25 31 | eqtrid |  |-  ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) = 1Q ) | 
						
							| 33 | 32 | oveq2d |  |-  ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) -> ( x .Q ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) ) = ( x .Q 1Q ) ) | 
						
							| 34 |  | mulidnq |  |-  ( x e. Q. -> ( x .Q 1Q ) = x ) | 
						
							| 35 | 33 34 | sylan9eq |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x .Q ( ( *Q ` ( g +Q h ) ) .Q ( g +Q h ) ) ) = x ) | 
						
							| 36 | 24 35 | eqtrid |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) = x ) | 
						
							| 37 | 36 | eleq1d |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) +Q ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q h ) ) e. ( A +P. B ) <-> x e. ( A +P. B ) ) ) | 
						
							| 38 | 21 37 | sylibd |  |-  ( ( ( ( A e. P. /\ g e. A ) /\ ( B e. P. /\ h e. B ) ) /\ x e. Q. ) -> ( x  x e. ( A +P. B ) ) ) |