| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
| 2 |
|
oveq1 |
|- ( [ <. x , y >. ] ~R = A -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) = ( A +R [ <. z , w >. ] ~R ) ) |
| 3 |
2
|
eleq1d |
|- ( [ <. x , y >. ] ~R = A -> ( ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) <-> ( A +R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) ) ) |
| 4 |
|
oveq2 |
|- ( [ <. z , w >. ] ~R = B -> ( A +R [ <. z , w >. ] ~R ) = ( A +R B ) ) |
| 5 |
4
|
eleq1d |
|- ( [ <. z , w >. ] ~R = B -> ( ( A +R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) <-> ( A +R B ) e. ( ( P. X. P. ) /. ~R ) ) ) |
| 6 |
|
addsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) = [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R ) |
| 7 |
|
addclpr |
|- ( ( x e. P. /\ z e. P. ) -> ( x +P. z ) e. P. ) |
| 8 |
|
addclpr |
|- ( ( y e. P. /\ w e. P. ) -> ( y +P. w ) e. P. ) |
| 9 |
7 8
|
anim12i |
|- ( ( ( x e. P. /\ z e. P. ) /\ ( y e. P. /\ w e. P. ) ) -> ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) ) |
| 10 |
9
|
an4s |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) ) |
| 11 |
|
opelxpi |
|- ( ( ( x +P. z ) e. P. /\ ( y +P. w ) e. P. ) -> <. ( x +P. z ) , ( y +P. w ) >. e. ( P. X. P. ) ) |
| 12 |
|
enrex |
|- ~R e. _V |
| 13 |
12
|
ecelqsi |
|- ( <. ( x +P. z ) , ( y +P. w ) >. e. ( P. X. P. ) -> [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 14 |
10 11 13
|
3syl |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R e. ( ( P. X. P. ) /. ~R ) ) |
| 15 |
6 14
|
eqeltrd |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) e. ( ( P. X. P. ) /. ~R ) ) |
| 16 |
1 3 5 15
|
2ecoptocl |
|- ( ( A e. R. /\ B e. R. ) -> ( A +R B ) e. ( ( P. X. P. ) /. ~R ) ) |
| 17 |
16 1
|
eleqtrrdi |
|- ( ( A e. R. /\ B e. R. ) -> ( A +R B ) e. R. ) |