| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq12 |
|- ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> ( ( A +P. D ) +P. ( F +P. S ) ) = ( ( B +P. C ) +P. ( G +P. R ) ) ) |
| 2 |
|
addclpr |
|- ( ( A e. P. /\ F e. P. ) -> ( A +P. F ) e. P. ) |
| 3 |
|
addclpr |
|- ( ( B e. P. /\ G e. P. ) -> ( B +P. G ) e. P. ) |
| 4 |
2 3
|
anim12i |
|- ( ( ( A e. P. /\ F e. P. ) /\ ( B e. P. /\ G e. P. ) ) -> ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) ) |
| 5 |
4
|
an4s |
|- ( ( ( A e. P. /\ B e. P. ) /\ ( F e. P. /\ G e. P. ) ) -> ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) ) |
| 6 |
|
addclpr |
|- ( ( C e. P. /\ R e. P. ) -> ( C +P. R ) e. P. ) |
| 7 |
|
addclpr |
|- ( ( D e. P. /\ S e. P. ) -> ( D +P. S ) e. P. ) |
| 8 |
6 7
|
anim12i |
|- ( ( ( C e. P. /\ R e. P. ) /\ ( D e. P. /\ S e. P. ) ) -> ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) |
| 9 |
8
|
an4s |
|- ( ( ( C e. P. /\ D e. P. ) /\ ( R e. P. /\ S e. P. ) ) -> ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) |
| 10 |
5 9
|
anim12i |
|- ( ( ( ( A e. P. /\ B e. P. ) /\ ( F e. P. /\ G e. P. ) ) /\ ( ( C e. P. /\ D e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) /\ ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) ) |
| 11 |
10
|
an4s |
|- ( ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) /\ ( ( F e. P. /\ G e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) /\ ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) ) |
| 12 |
|
enrbreq |
|- ( ( ( ( A +P. F ) e. P. /\ ( B +P. G ) e. P. ) /\ ( ( C +P. R ) e. P. /\ ( D +P. S ) e. P. ) ) -> ( <. ( A +P. F ) , ( B +P. G ) >. ~R <. ( C +P. R ) , ( D +P. S ) >. <-> ( ( A +P. F ) +P. ( D +P. S ) ) = ( ( B +P. G ) +P. ( C +P. R ) ) ) ) |
| 13 |
11 12
|
syl |
|- ( ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) /\ ( ( F e. P. /\ G e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( <. ( A +P. F ) , ( B +P. G ) >. ~R <. ( C +P. R ) , ( D +P. S ) >. <-> ( ( A +P. F ) +P. ( D +P. S ) ) = ( ( B +P. G ) +P. ( C +P. R ) ) ) ) |
| 14 |
|
addcompr |
|- ( F +P. D ) = ( D +P. F ) |
| 15 |
14
|
oveq1i |
|- ( ( F +P. D ) +P. S ) = ( ( D +P. F ) +P. S ) |
| 16 |
|
addasspr |
|- ( ( F +P. D ) +P. S ) = ( F +P. ( D +P. S ) ) |
| 17 |
|
addasspr |
|- ( ( D +P. F ) +P. S ) = ( D +P. ( F +P. S ) ) |
| 18 |
15 16 17
|
3eqtr3i |
|- ( F +P. ( D +P. S ) ) = ( D +P. ( F +P. S ) ) |
| 19 |
18
|
oveq2i |
|- ( A +P. ( F +P. ( D +P. S ) ) ) = ( A +P. ( D +P. ( F +P. S ) ) ) |
| 20 |
|
addasspr |
|- ( ( A +P. F ) +P. ( D +P. S ) ) = ( A +P. ( F +P. ( D +P. S ) ) ) |
| 21 |
|
addasspr |
|- ( ( A +P. D ) +P. ( F +P. S ) ) = ( A +P. ( D +P. ( F +P. S ) ) ) |
| 22 |
19 20 21
|
3eqtr4i |
|- ( ( A +P. F ) +P. ( D +P. S ) ) = ( ( A +P. D ) +P. ( F +P. S ) ) |
| 23 |
|
addcompr |
|- ( G +P. C ) = ( C +P. G ) |
| 24 |
23
|
oveq1i |
|- ( ( G +P. C ) +P. R ) = ( ( C +P. G ) +P. R ) |
| 25 |
|
addasspr |
|- ( ( G +P. C ) +P. R ) = ( G +P. ( C +P. R ) ) |
| 26 |
|
addasspr |
|- ( ( C +P. G ) +P. R ) = ( C +P. ( G +P. R ) ) |
| 27 |
24 25 26
|
3eqtr3i |
|- ( G +P. ( C +P. R ) ) = ( C +P. ( G +P. R ) ) |
| 28 |
27
|
oveq2i |
|- ( B +P. ( G +P. ( C +P. R ) ) ) = ( B +P. ( C +P. ( G +P. R ) ) ) |
| 29 |
|
addasspr |
|- ( ( B +P. G ) +P. ( C +P. R ) ) = ( B +P. ( G +P. ( C +P. R ) ) ) |
| 30 |
|
addasspr |
|- ( ( B +P. C ) +P. ( G +P. R ) ) = ( B +P. ( C +P. ( G +P. R ) ) ) |
| 31 |
28 29 30
|
3eqtr4i |
|- ( ( B +P. G ) +P. ( C +P. R ) ) = ( ( B +P. C ) +P. ( G +P. R ) ) |
| 32 |
22 31
|
eqeq12i |
|- ( ( ( A +P. F ) +P. ( D +P. S ) ) = ( ( B +P. G ) +P. ( C +P. R ) ) <-> ( ( A +P. D ) +P. ( F +P. S ) ) = ( ( B +P. C ) +P. ( G +P. R ) ) ) |
| 33 |
13 32
|
bitrdi |
|- ( ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) /\ ( ( F e. P. /\ G e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( <. ( A +P. F ) , ( B +P. G ) >. ~R <. ( C +P. R ) , ( D +P. S ) >. <-> ( ( A +P. D ) +P. ( F +P. S ) ) = ( ( B +P. C ) +P. ( G +P. R ) ) ) ) |
| 34 |
1 33
|
imbitrrid |
|- ( ( ( ( A e. P. /\ B e. P. ) /\ ( C e. P. /\ D e. P. ) ) /\ ( ( F e. P. /\ G e. P. ) /\ ( R e. P. /\ S e. P. ) ) ) -> ( ( ( A +P. D ) = ( B +P. C ) /\ ( F +P. S ) = ( G +P. R ) ) -> <. ( A +P. F ) , ( B +P. G ) >. ~R <. ( C +P. R ) , ( D +P. S ) >. ) ) |