Step |
Hyp |
Ref |
Expression |
1 |
|
rphalfcl |
|- ( A e. RR+ -> ( A / 2 ) e. RR+ ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> ( A / 2 ) e. RR+ ) |
3 |
|
simprl |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> u e. CC ) |
4 |
|
simpl2 |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> B e. CC ) |
5 |
|
simprr |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> v e. CC ) |
6 |
3 4 5
|
pnpcan2d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( u + v ) - ( B + v ) ) = ( u - B ) ) |
7 |
6
|
fveq2d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( u + v ) - ( B + v ) ) ) = ( abs ` ( u - B ) ) ) |
8 |
7
|
breq1d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( ( u + v ) - ( B + v ) ) ) < ( A / 2 ) <-> ( abs ` ( u - B ) ) < ( A / 2 ) ) ) |
9 |
|
simpl3 |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> C e. CC ) |
10 |
4 5 9
|
pnpcand |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( B + v ) - ( B + C ) ) = ( v - C ) ) |
11 |
10
|
fveq2d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( abs ` ( ( B + v ) - ( B + C ) ) ) = ( abs ` ( v - C ) ) ) |
12 |
11
|
breq1d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( abs ` ( ( B + v ) - ( B + C ) ) ) < ( A / 2 ) <-> ( abs ` ( v - C ) ) < ( A / 2 ) ) ) |
13 |
8 12
|
anbi12d |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( ( u + v ) - ( B + v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B + v ) - ( B + C ) ) ) < ( A / 2 ) ) <-> ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) ) ) |
14 |
|
addcl |
|- ( ( u e. CC /\ v e. CC ) -> ( u + v ) e. CC ) |
15 |
14
|
adantl |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( u + v ) e. CC ) |
16 |
4 9
|
addcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B + C ) e. CC ) |
17 |
4 5
|
addcld |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( B + v ) e. CC ) |
18 |
|
simpl1 |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> A e. RR+ ) |
19 |
18
|
rpred |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> A e. RR ) |
20 |
|
abs3lem |
|- ( ( ( ( u + v ) e. CC /\ ( B + C ) e. CC ) /\ ( ( B + v ) e. CC /\ A e. RR ) ) -> ( ( ( abs ` ( ( u + v ) - ( B + v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B + v ) - ( B + C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
21 |
15 16 17 19 20
|
syl22anc |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( ( u + v ) - ( B + v ) ) ) < ( A / 2 ) /\ ( abs ` ( ( B + v ) - ( B + C ) ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
22 |
13 21
|
sylbird |
|- ( ( ( A e. RR+ /\ B e. CC /\ C e. CC ) /\ ( u e. CC /\ v e. CC ) ) -> ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
23 |
22
|
ralrimivva |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
24 |
|
breq2 |
|- ( y = ( A / 2 ) -> ( ( abs ` ( u - B ) ) < y <-> ( abs ` ( u - B ) ) < ( A / 2 ) ) ) |
25 |
24
|
anbi1d |
|- ( y = ( A / 2 ) -> ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) ) ) |
26 |
25
|
imbi1d |
|- ( y = ( A / 2 ) -> ( ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) ) |
27 |
26
|
2ralbidv |
|- ( y = ( A / 2 ) -> ( A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) <-> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) ) |
28 |
|
breq2 |
|- ( z = ( A / 2 ) -> ( ( abs ` ( v - C ) ) < z <-> ( abs ` ( v - C ) ) < ( A / 2 ) ) ) |
29 |
28
|
anbi2d |
|- ( z = ( A / 2 ) -> ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) <-> ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) ) ) |
30 |
29
|
imbi1d |
|- ( z = ( A / 2 ) -> ( ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) <-> ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) ) |
31 |
30
|
2ralbidv |
|- ( z = ( A / 2 ) -> ( A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) <-> A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) ) |
32 |
27 31
|
rspc2ev |
|- ( ( ( A / 2 ) e. RR+ /\ ( A / 2 ) e. RR+ /\ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < ( A / 2 ) /\ ( abs ` ( v - C ) ) < ( A / 2 ) ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |
33 |
2 2 23 32
|
syl3anc |
|- ( ( A e. RR+ /\ B e. CC /\ C e. CC ) -> E. y e. RR+ E. z e. RR+ A. u e. CC A. v e. CC ( ( ( abs ` ( u - B ) ) < y /\ ( abs ` ( v - C ) ) < z ) -> ( abs ` ( ( u + v ) - ( B + C ) ) ) < A ) ) |