Description: The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | addcncf.a | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) | |
| addcncf.b | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) | ||
| Assertion | addcncf | |- ( ph -> ( x e. X |-> ( A + B ) ) e. ( X -cn-> CC ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addcncf.a | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) | |
| 2 | addcncf.b | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) | |
| 3 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | |
| 4 | 3 | addcn | |- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) | 
| 5 | 4 | a1i | |- ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) | 
| 6 | 3 5 1 2 | cncfmpt2f | |- ( ph -> ( x e. X |-> ( A + B ) ) e. ( X -cn-> CC ) ) |