Description: The addition of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | addcncf.a | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
|
addcncf.b | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
||
Assertion | addcncf | |- ( ph -> ( x e. X |-> ( A + B ) ) e. ( X -cn-> CC ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcncf.a | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
|
2 | addcncf.b | |- ( ph -> ( x e. X |-> B ) e. ( X -cn-> CC ) ) |
|
3 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
4 | 3 | addcn | |- + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
5 | 4 | a1i | |- ( ph -> + e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
6 | 3 5 1 2 | cncfmpt2f | |- ( ph -> ( x e. X |-> ( A + B ) ) e. ( X -cn-> CC ) ) |