Step |
Hyp |
Ref |
Expression |
1 |
|
addcnsr |
|- ( ( ( A e. R. /\ B e. R. ) /\ ( C e. R. /\ D e. R. ) ) -> ( <. A , B >. + <. C , D >. ) = <. ( A +R C ) , ( B +R D ) >. ) |
2 |
|
opex |
|- <. A , B >. e. _V |
3 |
2
|
ecid |
|- [ <. A , B >. ] `' _E = <. A , B >. |
4 |
|
opex |
|- <. C , D >. e. _V |
5 |
4
|
ecid |
|- [ <. C , D >. ] `' _E = <. C , D >. |
6 |
3 5
|
oveq12i |
|- ( [ <. A , B >. ] `' _E + [ <. C , D >. ] `' _E ) = ( <. A , B >. + <. C , D >. ) |
7 |
|
opex |
|- <. ( A +R C ) , ( B +R D ) >. e. _V |
8 |
7
|
ecid |
|- [ <. ( A +R C ) , ( B +R D ) >. ] `' _E = <. ( A +R C ) , ( B +R D ) >. |
9 |
1 6 8
|
3eqtr4g |
|- ( ( ( A e. R. /\ B e. R. ) /\ ( C e. R. /\ D e. R. ) ) -> ( [ <. A , B >. ] `' _E + [ <. C , D >. ] `' _E ) = [ <. ( A +R C ) , ( B +R D ) >. ] `' _E ) |