| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1cnd |
|- ( ( A e. CC /\ B e. CC ) -> 1 e. CC ) |
| 2 |
1 1
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( 1 + 1 ) e. CC ) |
| 3 |
|
simpl |
|- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
| 4 |
|
simpr |
|- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
| 5 |
2 3 4
|
adddid |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( ( 1 + 1 ) x. A ) + ( ( 1 + 1 ) x. B ) ) ) |
| 6 |
3 4
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) e. CC ) |
| 7 |
|
1p1times |
|- ( ( A + B ) e. CC -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
| 8 |
6 7
|
syl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
| 9 |
|
1p1times |
|- ( A e. CC -> ( ( 1 + 1 ) x. A ) = ( A + A ) ) |
| 10 |
|
1p1times |
|- ( B e. CC -> ( ( 1 + 1 ) x. B ) = ( B + B ) ) |
| 11 |
9 10
|
oveqan12d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( 1 + 1 ) x. A ) + ( ( 1 + 1 ) x. B ) ) = ( ( A + A ) + ( B + B ) ) ) |
| 12 |
5 8 11
|
3eqtr3rd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + A ) + ( B + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
| 13 |
3 3
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( A + A ) e. CC ) |
| 14 |
13 4 4
|
addassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + A ) + B ) + B ) = ( ( A + A ) + ( B + B ) ) ) |
| 15 |
6 3 4
|
addassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + B ) + A ) + B ) = ( ( A + B ) + ( A + B ) ) ) |
| 16 |
12 14 15
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) ) |
| 17 |
13 4
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + A ) + B ) e. CC ) |
| 18 |
6 3
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + A ) e. CC ) |
| 19 |
|
addcan2 |
|- ( ( ( ( A + A ) + B ) e. CC /\ ( ( A + B ) + A ) e. CC /\ B e. CC ) -> ( ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) <-> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) ) |
| 20 |
17 18 4 19
|
syl3anc |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) <-> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) ) |
| 21 |
16 20
|
mpbid |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) |
| 22 |
3 3 4
|
addassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + A ) + B ) = ( A + ( A + B ) ) ) |
| 23 |
3 4 3
|
addassd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) + A ) = ( A + ( B + A ) ) ) |
| 24 |
21 22 23
|
3eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( A + ( A + B ) ) = ( A + ( B + A ) ) ) |
| 25 |
4 3
|
addcld |
|- ( ( A e. CC /\ B e. CC ) -> ( B + A ) e. CC ) |
| 26 |
|
addcan |
|- ( ( A e. CC /\ ( A + B ) e. CC /\ ( B + A ) e. CC ) -> ( ( A + ( A + B ) ) = ( A + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) |
| 27 |
3 6 25 26
|
syl3anc |
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + ( A + B ) ) = ( A + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) |
| 28 |
24 27
|
mpbid |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |