Step |
Hyp |
Ref |
Expression |
1 |
|
muld.1 |
|- ( ph -> A e. CC ) |
2 |
|
addcomd.2 |
|- ( ph -> B e. CC ) |
3 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
4 |
3 3
|
addcld |
|- ( ph -> ( 1 + 1 ) e. CC ) |
5 |
4 1 2
|
adddid |
|- ( ph -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( ( 1 + 1 ) x. A ) + ( ( 1 + 1 ) x. B ) ) ) |
6 |
1 2
|
addcld |
|- ( ph -> ( A + B ) e. CC ) |
7 |
|
1p1times |
|- ( ( A + B ) e. CC -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
8 |
6 7
|
syl |
|- ( ph -> ( ( 1 + 1 ) x. ( A + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
9 |
|
1p1times |
|- ( A e. CC -> ( ( 1 + 1 ) x. A ) = ( A + A ) ) |
10 |
1 9
|
syl |
|- ( ph -> ( ( 1 + 1 ) x. A ) = ( A + A ) ) |
11 |
|
1p1times |
|- ( B e. CC -> ( ( 1 + 1 ) x. B ) = ( B + B ) ) |
12 |
2 11
|
syl |
|- ( ph -> ( ( 1 + 1 ) x. B ) = ( B + B ) ) |
13 |
10 12
|
oveq12d |
|- ( ph -> ( ( ( 1 + 1 ) x. A ) + ( ( 1 + 1 ) x. B ) ) = ( ( A + A ) + ( B + B ) ) ) |
14 |
5 8 13
|
3eqtr3rd |
|- ( ph -> ( ( A + A ) + ( B + B ) ) = ( ( A + B ) + ( A + B ) ) ) |
15 |
1 1
|
addcld |
|- ( ph -> ( A + A ) e. CC ) |
16 |
15 2 2
|
addassd |
|- ( ph -> ( ( ( A + A ) + B ) + B ) = ( ( A + A ) + ( B + B ) ) ) |
17 |
6 1 2
|
addassd |
|- ( ph -> ( ( ( A + B ) + A ) + B ) = ( ( A + B ) + ( A + B ) ) ) |
18 |
14 16 17
|
3eqtr4d |
|- ( ph -> ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) ) |
19 |
15 2
|
addcld |
|- ( ph -> ( ( A + A ) + B ) e. CC ) |
20 |
6 1
|
addcld |
|- ( ph -> ( ( A + B ) + A ) e. CC ) |
21 |
|
addcan2 |
|- ( ( ( ( A + A ) + B ) e. CC /\ ( ( A + B ) + A ) e. CC /\ B e. CC ) -> ( ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) <-> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) ) |
22 |
19 20 2 21
|
syl3anc |
|- ( ph -> ( ( ( ( A + A ) + B ) + B ) = ( ( ( A + B ) + A ) + B ) <-> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) ) |
23 |
18 22
|
mpbid |
|- ( ph -> ( ( A + A ) + B ) = ( ( A + B ) + A ) ) |
24 |
1 1 2
|
addassd |
|- ( ph -> ( ( A + A ) + B ) = ( A + ( A + B ) ) ) |
25 |
1 2 1
|
addassd |
|- ( ph -> ( ( A + B ) + A ) = ( A + ( B + A ) ) ) |
26 |
23 24 25
|
3eqtr3d |
|- ( ph -> ( A + ( A + B ) ) = ( A + ( B + A ) ) ) |
27 |
2 1
|
addcld |
|- ( ph -> ( B + A ) e. CC ) |
28 |
|
addcan |
|- ( ( A e. CC /\ ( A + B ) e. CC /\ ( B + A ) e. CC ) -> ( ( A + ( A + B ) ) = ( A + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) |
29 |
1 6 27 28
|
syl3anc |
|- ( ph -> ( ( A + ( A + B ) ) = ( A + ( B + A ) ) <-> ( A + B ) = ( B + A ) ) ) |
30 |
26 29
|
mpbid |
|- ( ph -> ( A + B ) = ( B + A ) ) |