Metamath Proof Explorer
Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
mul.1 |
|- A e. CC |
|
|
mul.2 |
|- B e. CC |
|
|
addcomli.2 |
|- ( A + B ) = C |
|
Assertion |
addcomli |
|- ( B + A ) = C |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mul.1 |
|- A e. CC |
2 |
|
mul.2 |
|- B e. CC |
3 |
|
addcomli.2 |
|- ( A + B ) = C |
4 |
2 1
|
addcomi |
|- ( B + A ) = ( A + B ) |
5 |
4 3
|
eqtri |
|- ( B + A ) = C |