Metamath Proof Explorer


Theorem addcomli

Description: Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015)

Ref Expression
Hypotheses mul.1
|- A e. CC
mul.2
|- B e. CC
addcomli.2
|- ( A + B ) = C
Assertion addcomli
|- ( B + A ) = C

Proof

Step Hyp Ref Expression
1 mul.1
 |-  A e. CC
2 mul.2
 |-  B e. CC
3 addcomli.2
 |-  ( A + B ) = C
4 2 1 addcomi
 |-  ( B + A ) = ( A + B )
5 4 3 eqtri
 |-  ( B + A ) = C