| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcompq |
|- ( A +pQ B ) = ( B +pQ A ) |
| 2 |
1
|
fveq2i |
|- ( /Q ` ( A +pQ B ) ) = ( /Q ` ( B +pQ A ) ) |
| 3 |
|
addpqnq |
|- ( ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) = ( /Q ` ( A +pQ B ) ) ) |
| 4 |
|
addpqnq |
|- ( ( B e. Q. /\ A e. Q. ) -> ( B +Q A ) = ( /Q ` ( B +pQ A ) ) ) |
| 5 |
4
|
ancoms |
|- ( ( A e. Q. /\ B e. Q. ) -> ( B +Q A ) = ( /Q ` ( B +pQ A ) ) ) |
| 6 |
2 3 5
|
3eqtr4a |
|- ( ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) = ( B +Q A ) ) |
| 7 |
|
addnqf |
|- +Q : ( Q. X. Q. ) --> Q. |
| 8 |
7
|
fdmi |
|- dom +Q = ( Q. X. Q. ) |
| 9 |
8
|
ndmovcom |
|- ( -. ( A e. Q. /\ B e. Q. ) -> ( A +Q B ) = ( B +Q A ) ) |
| 10 |
6 9
|
pm2.61i |
|- ( A +Q B ) = ( B +Q A ) |