Step |
Hyp |
Ref |
Expression |
1 |
|
df-nr |
|- R. = ( ( P. X. P. ) /. ~R ) |
2 |
|
addsrpr |
|- ( ( ( x e. P. /\ y e. P. ) /\ ( z e. P. /\ w e. P. ) ) -> ( [ <. x , y >. ] ~R +R [ <. z , w >. ] ~R ) = [ <. ( x +P. z ) , ( y +P. w ) >. ] ~R ) |
3 |
|
addsrpr |
|- ( ( ( z e. P. /\ w e. P. ) /\ ( x e. P. /\ y e. P. ) ) -> ( [ <. z , w >. ] ~R +R [ <. x , y >. ] ~R ) = [ <. ( z +P. x ) , ( w +P. y ) >. ] ~R ) |
4 |
|
addcompr |
|- ( x +P. z ) = ( z +P. x ) |
5 |
|
addcompr |
|- ( y +P. w ) = ( w +P. y ) |
6 |
1 2 3 4 5
|
ecovcom |
|- ( ( A e. R. /\ B e. R. ) -> ( A +R B ) = ( B +R A ) ) |
7 |
|
dmaddsr |
|- dom +R = ( R. X. R. ) |
8 |
7
|
ndmovcom |
|- ( -. ( A e. R. /\ B e. R. ) -> ( A +R B ) = ( B +R A ) ) |
9 |
6 8
|
pm2.61i |
|- ( A +R B ) = ( B +R A ) |