Metamath Proof Explorer


Theorem adddiri

Description: Distributive law (right-distributivity). (Contributed by NM, 16-Feb-1995)

Ref Expression
Hypotheses axi.1
|- A e. CC
axi.2
|- B e. CC
axi.3
|- C e. CC
Assertion adddiri
|- ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) )

Proof

Step Hyp Ref Expression
1 axi.1
 |-  A e. CC
2 axi.2
 |-  B e. CC
3 axi.3
 |-  C e. CC
4 adddir
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) ) )
5 1 2 3 4 mp3an
 |-  ( ( A + B ) x. C ) = ( ( A x. C ) + ( B x. C ) )