Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> A e. ZZ ) |
2 |
|
nn0nndivcl |
|- ( ( B e. NN0 /\ C e. NN ) -> ( B / C ) e. RR ) |
3 |
2
|
3adant1 |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( B / C ) e. RR ) |
4 |
1 3
|
jca |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( A e. ZZ /\ ( B / C ) e. RR ) ) |
5 |
|
flbi2 |
|- ( ( A e. ZZ /\ ( B / C ) e. RR ) -> ( ( |_ ` ( A + ( B / C ) ) ) = A <-> ( 0 <_ ( B / C ) /\ ( B / C ) < 1 ) ) ) |
6 |
4 5
|
syl |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( ( |_ ` ( A + ( B / C ) ) ) = A <-> ( 0 <_ ( B / C ) /\ ( B / C ) < 1 ) ) ) |
7 |
|
nn0re |
|- ( B e. NN0 -> B e. RR ) |
8 |
|
nn0ge0 |
|- ( B e. NN0 -> 0 <_ B ) |
9 |
7 8
|
jca |
|- ( B e. NN0 -> ( B e. RR /\ 0 <_ B ) ) |
10 |
|
nnre |
|- ( C e. NN -> C e. RR ) |
11 |
|
nngt0 |
|- ( C e. NN -> 0 < C ) |
12 |
10 11
|
jca |
|- ( C e. NN -> ( C e. RR /\ 0 < C ) ) |
13 |
9 12
|
anim12i |
|- ( ( B e. NN0 /\ C e. NN ) -> ( ( B e. RR /\ 0 <_ B ) /\ ( C e. RR /\ 0 < C ) ) ) |
14 |
13
|
3adant1 |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( ( B e. RR /\ 0 <_ B ) /\ ( C e. RR /\ 0 < C ) ) ) |
15 |
|
divge0 |
|- ( ( ( B e. RR /\ 0 <_ B ) /\ ( C e. RR /\ 0 < C ) ) -> 0 <_ ( B / C ) ) |
16 |
14 15
|
syl |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> 0 <_ ( B / C ) ) |
17 |
16
|
biantrurd |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( ( B / C ) < 1 <-> ( 0 <_ ( B / C ) /\ ( B / C ) < 1 ) ) ) |
18 |
|
nnrp |
|- ( C e. NN -> C e. RR+ ) |
19 |
7 18
|
anim12i |
|- ( ( B e. NN0 /\ C e. NN ) -> ( B e. RR /\ C e. RR+ ) ) |
20 |
19
|
3adant1 |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( B e. RR /\ C e. RR+ ) ) |
21 |
|
divlt1lt |
|- ( ( B e. RR /\ C e. RR+ ) -> ( ( B / C ) < 1 <-> B < C ) ) |
22 |
20 21
|
syl |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( ( B / C ) < 1 <-> B < C ) ) |
23 |
6 17 22
|
3bitr2rd |
|- ( ( A e. ZZ /\ B e. NN0 /\ C e. NN ) -> ( B < C <-> ( |_ ` ( A + ( B / C ) ) ) = A ) ) |