Description: Two complex numbers add up to zero iff they are each other's opposites. (Contributed by Thierry Arnoux, 2-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | addeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = 0 <-> A = -u B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cnd | |- ( ( A e. CC /\ B e. CC ) -> 0 e. CC ) |
|
2 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
3 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
4 | 1 2 3 | subadd2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( 0 - B ) = A <-> ( A + B ) = 0 ) ) |
5 | df-neg | |- -u B = ( 0 - B ) |
|
6 | 5 | eqeq1i | |- ( -u B = A <-> ( 0 - B ) = A ) |
7 | eqcom | |- ( -u B = A <-> A = -u B ) |
|
8 | 6 7 | bitr3i | |- ( ( 0 - B ) = A <-> A = -u B ) |
9 | 4 8 | bitr3di | |- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = 0 <-> A = -u B ) ) |