Metamath Proof Explorer


Theorem addeq0

Description: Two complex numbers add up to zero iff they are each other's opposites. (Contributed by Thierry Arnoux, 2-May-2017)

Ref Expression
Assertion addeq0
|- ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = 0 <-> A = -u B ) )

Proof

Step Hyp Ref Expression
1 0cnd
 |-  ( ( A e. CC /\ B e. CC ) -> 0 e. CC )
2 simpr
 |-  ( ( A e. CC /\ B e. CC ) -> B e. CC )
3 simpl
 |-  ( ( A e. CC /\ B e. CC ) -> A e. CC )
4 1 2 3 subadd2d
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( 0 - B ) = A <-> ( A + B ) = 0 ) )
5 df-neg
 |-  -u B = ( 0 - B )
6 5 eqeq1i
 |-  ( -u B = A <-> ( 0 - B ) = A )
7 eqcom
 |-  ( -u B = A <-> A = -u B )
8 6 7 bitr3i
 |-  ( ( 0 - B ) = A <-> A = -u B )
9 4 8 bitr3di
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + B ) = 0 <-> A = -u B ) )