| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xp1st |
|- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
| 2 |
1
|
3ad2ant1 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` A ) e. N. ) |
| 3 |
|
xp2nd |
|- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
| 4 |
3
|
3ad2ant3 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` C ) e. N. ) |
| 5 |
|
mulclpi |
|- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 6 |
2 4 5
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 7 |
|
xp1st |
|- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
| 8 |
7
|
3ad2ant3 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` C ) e. N. ) |
| 9 |
|
xp2nd |
|- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` A ) e. N. ) |
| 11 |
|
mulclpi |
|- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) |
| 13 |
|
addclpi |
|- ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) -> ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. ) |
| 14 |
6 12 13
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. ) |
| 15 |
|
mulclpi |
|- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 16 |
10 4 15
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
| 17 |
|
xp1st |
|- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
| 18 |
17
|
3ad2ant2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` B ) e. N. ) |
| 19 |
|
mulclpi |
|- ( ( ( 1st ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 20 |
18 4 19
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 21 |
|
xp2nd |
|- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
| 22 |
21
|
3ad2ant2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` B ) e. N. ) |
| 23 |
|
mulclpi |
|- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
| 24 |
8 22 23
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
| 25 |
|
addclpi |
|- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 26 |
20 24 25
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 27 |
|
mulclpi |
|- ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 28 |
22 4 27
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
| 29 |
|
enqbreq |
|- ( ( ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) /\ ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
| 30 |
14 16 26 28 29
|
syl22anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
| 31 |
|
addpipq2 |
|- ( ( A e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A +pQ C ) = <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
| 32 |
31
|
3adant2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A +pQ C ) = <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
| 33 |
|
addpipq2 |
|- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 34 |
33
|
3adant1 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
| 35 |
32 34
|
breq12d |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( A +pQ C ) ~Q ( B +pQ C ) <-> <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) |
| 36 |
|
enqbreq2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 37 |
36
|
3adant3 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 38 |
|
mulclpi |
|- ( ( ( 2nd ` C ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. ) |
| 39 |
4 4 38
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. ) |
| 40 |
|
mulclpi |
|- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 41 |
2 22 40
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
| 42 |
|
mulcanpi |
|- ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 43 |
39 41 42
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 44 |
|
mulclpi |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 45 |
16 24 44
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
| 46 |
|
mulclpi |
|- ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) e. N. ) |
| 47 |
39 41 46
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) e. N. ) |
| 48 |
|
addcanpi |
|- ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. /\ ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) e. N. ) -> ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) <-> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) ) |
| 49 |
45 47 48
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) <-> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) ) |
| 50 |
|
mulcompi |
|- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) |
| 51 |
|
fvex |
|- ( 1st ` A ) e. _V |
| 52 |
|
fvex |
|- ( 2nd ` B ) e. _V |
| 53 |
|
fvex |
|- ( 2nd ` C ) e. _V |
| 54 |
|
mulcompi |
|- ( x .N y ) = ( y .N x ) |
| 55 |
|
mulasspi |
|- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
| 56 |
51 52 53 54 55 53
|
caov4 |
|- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 57 |
50 56
|
eqtri |
|- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 58 |
|
fvex |
|- ( 2nd ` A ) e. _V |
| 59 |
|
fvex |
|- ( 1st ` C ) e. _V |
| 60 |
58 53 59 54 55 52
|
caov4 |
|- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
| 61 |
|
mulcompi |
|- ( ( 2nd ` A ) .N ( 1st ` C ) ) = ( ( 1st ` C ) .N ( 2nd ` A ) ) |
| 62 |
|
mulcompi |
|- ( ( 2nd ` C ) .N ( 2nd ` B ) ) = ( ( 2nd ` B ) .N ( 2nd ` C ) ) |
| 63 |
61 62
|
oveq12i |
|- ( ( ( 2nd ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 64 |
60 63
|
eqtri |
|- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 65 |
57 64
|
oveq12i |
|- ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) |
| 66 |
|
addcompi |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
| 67 |
|
ovex |
|- ( ( 1st ` A ) .N ( 2nd ` C ) ) e. _V |
| 68 |
|
ovex |
|- ( ( 1st ` C ) .N ( 2nd ` A ) ) e. _V |
| 69 |
|
ovex |
|- ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. _V |
| 70 |
|
distrpi |
|- ( x .N ( y +N z ) ) = ( ( x .N y ) +N ( x .N z ) ) |
| 71 |
67 68 69 54 70
|
caovdir |
|- ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) |
| 72 |
65 66 71
|
3eqtr4i |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
| 73 |
|
addcompi |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
| 74 |
|
mulasspi |
|- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
| 75 |
|
mulcompi |
|- ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) |
| 76 |
|
mulasspi |
|- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` C ) .N ( 1st ` B ) ) ) |
| 77 |
|
mulcompi |
|- ( ( 2nd ` A ) .N ( ( 2nd ` C ) .N ( 1st ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 1st ` B ) ) .N ( 2nd ` A ) ) |
| 78 |
|
mulasspi |
|- ( ( ( 2nd ` C ) .N ( 1st ` B ) ) .N ( 2nd ` A ) ) = ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) |
| 79 |
76 77 78
|
3eqtrri |
|- ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) |
| 80 |
79
|
oveq1i |
|- ( ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) .N ( 2nd ` C ) ) |
| 81 |
75 80
|
eqtri |
|- ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) .N ( 2nd ` C ) ) |
| 82 |
|
mulasspi |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) .N ( 2nd ` C ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
| 83 |
81 82
|
eqtri |
|- ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
| 84 |
74 83
|
eqtri |
|- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
| 85 |
84
|
oveq2i |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) |
| 86 |
|
distrpi |
|- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
| 87 |
73 85 86
|
3eqtr4i |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
| 88 |
72 87
|
eqeq12i |
|- ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) |
| 89 |
49 88
|
bitr3di |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
| 90 |
37 43 89
|
3bitr2d |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
| 91 |
30 35 90
|
3bitr4rd |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( A +pQ C ) ~Q ( B +pQ C ) ) ) |