Step |
Hyp |
Ref |
Expression |
1 |
|
xp1st |
|- ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) |
2 |
1
|
3ad2ant1 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` A ) e. N. ) |
3 |
|
xp2nd |
|- ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) |
4 |
3
|
3ad2ant3 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` C ) e. N. ) |
5 |
|
mulclpi |
|- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` C ) ) e. N. ) |
6 |
2 4 5
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` C ) ) e. N. ) |
7 |
|
xp1st |
|- ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) |
8 |
7
|
3ad2ant3 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` C ) e. N. ) |
9 |
|
xp2nd |
|- ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) |
10 |
9
|
3ad2ant1 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` A ) e. N. ) |
11 |
|
mulclpi |
|- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` A ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) |
12 |
8 10 11
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) |
13 |
|
addclpi |
|- ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` A ) ) e. N. ) -> ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. ) |
14 |
6 12 13
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. ) |
15 |
|
mulclpi |
|- ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
16 |
10 4 15
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) |
17 |
|
xp1st |
|- ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) |
18 |
17
|
3ad2ant2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` B ) e. N. ) |
19 |
|
mulclpi |
|- ( ( ( 1st ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
20 |
18 4 19
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. ) |
21 |
|
xp2nd |
|- ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) |
22 |
21
|
3ad2ant2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` B ) e. N. ) |
23 |
|
mulclpi |
|- ( ( ( 1st ` C ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
24 |
8 22 23
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) |
25 |
|
addclpi |
|- ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
26 |
20 24 25
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
27 |
|
mulclpi |
|- ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
28 |
22 4 27
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) |
29 |
|
enqbreq |
|- ( ( ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) /\ ( ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
30 |
14 16 26 28 29
|
syl22anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
31 |
|
addpipq2 |
|- ( ( A e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A +pQ C ) = <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
32 |
31
|
3adant2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A +pQ C ) = <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) |
33 |
|
addpipq2 |
|- ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
34 |
33
|
3adant1 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B +pQ C ) = <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) |
35 |
32 34
|
breq12d |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( A +pQ C ) ~Q ( B +pQ C ) <-> <. ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) |
36 |
|
enqbreq2 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
37 |
36
|
3adant3 |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
38 |
|
mulclpi |
|- ( ( ( 2nd ` C ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. ) |
39 |
4 4 38
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. ) |
40 |
|
mulclpi |
|- ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
41 |
2 22 40
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) |
42 |
|
mulcanpi |
|- ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
43 |
39 41 42
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
44 |
|
mulclpi |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` C ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
45 |
16 24 44
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. ) |
46 |
|
mulclpi |
|- ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) e. N. ) |
47 |
39 41 46
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) e. N. ) |
48 |
|
addcanpi |
|- ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) e. N. /\ ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) e. N. ) -> ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) <-> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) ) |
49 |
45 47 48
|
syl2anc |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) <-> ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) ) |
50 |
|
mulcompi |
|- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) |
51 |
|
fvex |
|- ( 1st ` A ) e. _V |
52 |
|
fvex |
|- ( 2nd ` B ) e. _V |
53 |
|
fvex |
|- ( 2nd ` C ) e. _V |
54 |
|
mulcompi |
|- ( x .N y ) = ( y .N x ) |
55 |
|
mulasspi |
|- ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) |
56 |
51 52 53 54 55 53
|
caov4 |
|- ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 2nd ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
57 |
50 56
|
eqtri |
|- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
58 |
|
fvex |
|- ( 2nd ` A ) e. _V |
59 |
|
fvex |
|- ( 1st ` C ) e. _V |
60 |
58 53 59 54 55 52
|
caov4 |
|- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) |
61 |
|
mulcompi |
|- ( ( 2nd ` A ) .N ( 1st ` C ) ) = ( ( 1st ` C ) .N ( 2nd ` A ) ) |
62 |
|
mulcompi |
|- ( ( 2nd ` C ) .N ( 2nd ` B ) ) = ( ( 2nd ` B ) .N ( 2nd ` C ) ) |
63 |
61 62
|
oveq12i |
|- ( ( ( 2nd ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
64 |
60 63
|
eqtri |
|- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
65 |
57 64
|
oveq12i |
|- ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) |
66 |
|
addcompi |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
67 |
|
ovex |
|- ( ( 1st ` A ) .N ( 2nd ` C ) ) e. _V |
68 |
|
ovex |
|- ( ( 1st ` C ) .N ( 2nd ` A ) ) e. _V |
69 |
|
ovex |
|- ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. _V |
70 |
|
distrpi |
|- ( x .N ( y +N z ) ) = ( ( x .N y ) +N ( x .N z ) ) |
71 |
67 68 69 54 70
|
caovdir |
|- ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 1st ` C ) .N ( 2nd ` A ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) ) |
72 |
65 66 71
|
3eqtr4i |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) |
73 |
|
addcompi |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
74 |
|
mulasspi |
|- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |
75 |
|
mulcompi |
|- ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) |
76 |
|
mulasspi |
|- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) = ( ( 2nd ` A ) .N ( ( 2nd ` C ) .N ( 1st ` B ) ) ) |
77 |
|
mulcompi |
|- ( ( 2nd ` A ) .N ( ( 2nd ` C ) .N ( 1st ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 1st ` B ) ) .N ( 2nd ` A ) ) |
78 |
|
mulasspi |
|- ( ( ( 2nd ` C ) .N ( 1st ` B ) ) .N ( 2nd ` A ) ) = ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) |
79 |
76 77 78
|
3eqtrri |
|- ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) |
80 |
79
|
oveq1i |
|- ( ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) .N ( 2nd ` C ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) .N ( 2nd ` C ) ) |
81 |
75 80
|
eqtri |
|- ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) .N ( 2nd ` C ) ) |
82 |
|
mulasspi |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( 1st ` B ) ) .N ( 2nd ` C ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
83 |
81 82
|
eqtri |
|- ( ( 2nd ` C ) .N ( ( 2nd ` C ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
84 |
74 83
|
eqtri |
|- ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) |
85 |
84
|
oveq2i |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) ) |
86 |
|
distrpi |
|- ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` C ) ) ) +N ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
87 |
73 85 86
|
3eqtr4i |
|- ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) |
88 |
72 87
|
eqeq12i |
|- ( ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) ) = ( ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) +N ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) |
89 |
49 88
|
bitr3di |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 2nd ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
90 |
37 43 89
|
3bitr2d |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( ( ( 1st ` A ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` A ) ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( ( 1st ` B ) .N ( 2nd ` C ) ) +N ( ( 1st ` C ) .N ( 2nd ` B ) ) ) ) ) ) |
91 |
30 35 90
|
3bitr4rd |
|- ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( A +pQ C ) ~Q ( B +pQ C ) ) ) |