Description: The sum of 2 nonnegative numbers is nonnegative. (Contributed by NM, 17-Mar-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | addge0 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A + B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 00id | |- ( 0 + 0 ) = 0 |
|
2 | 0re | |- 0 e. RR |
|
3 | le2add | |- ( ( ( 0 e. RR /\ 0 e. RR ) /\ ( A e. RR /\ B e. RR ) ) -> ( ( 0 <_ A /\ 0 <_ B ) -> ( 0 + 0 ) <_ ( A + B ) ) ) |
|
4 | 2 2 3 | mpanl12 | |- ( ( A e. RR /\ B e. RR ) -> ( ( 0 <_ A /\ 0 <_ B ) -> ( 0 + 0 ) <_ ( A + B ) ) ) |
5 | 4 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> ( 0 + 0 ) <_ ( A + B ) ) |
6 | 1 5 | eqbrtrrid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A + B ) ) |