Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
ltnegd.2 | |- ( ph -> B e. RR ) |
||
addge0d.3 | |- ( ph -> 0 <_ A ) |
||
addge0d.4 | |- ( ph -> 0 <_ B ) |
||
Assertion | addge0d | |- ( ph -> 0 <_ ( A + B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | |- ( ph -> A e. RR ) |
|
2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
3 | addge0d.3 | |- ( ph -> 0 <_ A ) |
|
4 | addge0d.4 | |- ( ph -> 0 <_ B ) |
|
5 | addge0 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A + B ) ) |
|
6 | 1 2 3 4 5 | syl22anc | |- ( ph -> 0 <_ ( A + B ) ) |