Metamath Proof Explorer


Theorem addgegt0d

Description: Addition of nonnegative and positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1
|- ( ph -> A e. RR )
ltnegd.2
|- ( ph -> B e. RR )
addgegt0d.3
|- ( ph -> 0 <_ A )
addgegt0d.4
|- ( ph -> 0 < B )
Assertion addgegt0d
|- ( ph -> 0 < ( A + B ) )

Proof

Step Hyp Ref Expression
1 leidd.1
 |-  ( ph -> A e. RR )
2 ltnegd.2
 |-  ( ph -> B e. RR )
3 addgegt0d.3
 |-  ( ph -> 0 <_ A )
4 addgegt0d.4
 |-  ( ph -> 0 < B )
5 addgegt0
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 < B ) ) -> 0 < ( A + B ) )
6 1 2 3 4 5 syl22anc
 |-  ( ph -> 0 < ( A + B ) )