Metamath Proof Explorer


Theorem addgt0d

Description: Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses leidd.1
|- ( ph -> A e. RR )
ltnegd.2
|- ( ph -> B e. RR )
addgt0d.3
|- ( ph -> 0 < A )
addgt0d.4
|- ( ph -> 0 < B )
Assertion addgt0d
|- ( ph -> 0 < ( A + B ) )

Proof

Step Hyp Ref Expression
1 leidd.1
 |-  ( ph -> A e. RR )
2 ltnegd.2
 |-  ( ph -> B e. RR )
3 addgt0d.3
 |-  ( ph -> 0 < A )
4 addgt0d.4
 |-  ( ph -> 0 < B )
5 0red
 |-  ( ph -> 0 e. RR )
6 5 1 3 ltled
 |-  ( ph -> 0 <_ A )
7 1 2 6 4 addgegt0d
 |-  ( ph -> 0 < ( A + B ) )