Metamath Proof Explorer


Theorem addgt0ii

Description: Addition of 2 positive numbers is positive. (Contributed by NM, 18-May-1999)

Ref Expression
Hypotheses lt2.1
|- A e. RR
lt2.2
|- B e. RR
addgt0i.3
|- 0 < A
addgt0i.4
|- 0 < B
Assertion addgt0ii
|- 0 < ( A + B )

Proof

Step Hyp Ref Expression
1 lt2.1
 |-  A e. RR
2 lt2.2
 |-  B e. RR
3 addgt0i.3
 |-  0 < A
4 addgt0i.4
 |-  0 < B
5 1 2 addgt0i
 |-  ( ( 0 < A /\ 0 < B ) -> 0 < ( A + B ) )
6 3 4 5 mp2an
 |-  0 < ( A + B )