Metamath Proof Explorer


Theorem addgt0sr

Description: The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996) (New usage is discouraged.)

Ref Expression
Assertion addgt0sr
|- ( ( 0R  0R 

Proof

Step Hyp Ref Expression
1 ltrelsr
 |-  
2 1 brel
 |-  ( 0R  ( 0R e. R. /\ A e. R. ) )
3 ltasr
 |-  ( A e. R. -> ( 0R  ( A +R 0R ) 
4 0idsr
 |-  ( A e. R. -> ( A +R 0R ) = A )
5 4 breq1d
 |-  ( A e. R. -> ( ( A +R 0R )  A 
6 3 5 bitrd
 |-  ( A e. R. -> ( 0R  A 
7 2 6 simpl2im
 |-  ( 0R  ( 0R  A 
8 7 biimpa
 |-  ( ( 0R  A 
9 ltsosr
 |-  
10 9 1 sotri
 |-  ( ( 0R  0R 
11 8 10 syldan
 |-  ( ( 0R  0R