Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( X e. CC /\ Y e. CC ) -> X e. CC ) |
2 |
|
simpr |
|- ( ( X e. CC /\ Y e. CC ) -> Y e. CC ) |
3 |
1 1 2
|
subaddd |
|- ( ( X e. CC /\ Y e. CC ) -> ( ( X - X ) = Y <-> ( X + Y ) = X ) ) |
4 |
|
eqcom |
|- ( ( X - X ) = Y <-> Y = ( X - X ) ) |
5 |
|
simpr |
|- ( ( X e. CC /\ Y = ( X - X ) ) -> Y = ( X - X ) ) |
6 |
|
subid |
|- ( X e. CC -> ( X - X ) = 0 ) |
7 |
6
|
adantr |
|- ( ( X e. CC /\ Y = ( X - X ) ) -> ( X - X ) = 0 ) |
8 |
5 7
|
eqtrd |
|- ( ( X e. CC /\ Y = ( X - X ) ) -> Y = 0 ) |
9 |
8
|
ex |
|- ( X e. CC -> ( Y = ( X - X ) -> Y = 0 ) ) |
10 |
4 9
|
syl5bi |
|- ( X e. CC -> ( ( X - X ) = Y -> Y = 0 ) ) |
11 |
10
|
adantr |
|- ( ( X e. CC /\ Y e. CC ) -> ( ( X - X ) = Y -> Y = 0 ) ) |
12 |
3 11
|
sylbird |
|- ( ( X e. CC /\ Y e. CC ) -> ( ( X + Y ) = X -> Y = 0 ) ) |
13 |
|
oveq2 |
|- ( Y = 0 -> ( X + Y ) = ( X + 0 ) ) |
14 |
|
addid1 |
|- ( X e. CC -> ( X + 0 ) = X ) |
15 |
13 14
|
sylan9eqr |
|- ( ( X e. CC /\ Y = 0 ) -> ( X + Y ) = X ) |
16 |
15
|
ex |
|- ( X e. CC -> ( Y = 0 -> ( X + Y ) = X ) ) |
17 |
16
|
adantr |
|- ( ( X e. CC /\ Y e. CC ) -> ( Y = 0 -> ( X + Y ) = X ) ) |
18 |
12 17
|
impbid |
|- ( ( X e. CC /\ Y e. CC ) -> ( ( X + Y ) = X <-> Y = 0 ) ) |